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Capitulo 1

O problema de 2 corpos

O Problema de Dois Corpos trata da interacao gravitacional entre dois corpos massivos isolados no
espago, de acordo com a lei da gravitagao universal de Newton. E 0 caso mais simples e fundamental
da Dinamica Orbital, servindo como base para a compreensao do movimento de corpos celestes.
Sua solucao permite obter as equagoes das orbitas descritas por cada um dos corpos em torno
do centro de massa do sistema, bem como os elementos orbitais que determinam o formato e a
orientacao dessas orbitas no espaco. E também o tinico caso de sistema gravitacional com solucao
puramente analitica, o que reforca sua importancia conceitual. Ja o Problema de Trés Corpos,
discutido no Capitulo , admite solucoes analiticas apenas em casos especiais. Situagoes mais gerais,
envolvendo trés ou mais corpos em interagao gravitacional, requerem abordagens semi-analiticas
ou totalmente numéricas.

Como suposicao simplificadora, os dois corpos sao assumidos como pontos de massa, com
massas m; € my. Um ponto de massa corresponde a um corpo material idealizado cuja massa
estd concentrada em um tnico ponto do espago — ou seja, trata-se de um objeto sem dimensao
fisica. Nessa condicao, aplica-se a Lei da Gravitacao Universal de Newton, segundo a qual a forca
gravitacional F entre os corpos é dada por:

mims _,

F=-G 7, (1.1)

r3
onde 7 é o vetor-posicao do corpo de massa msy em relacao ao corpo de massa mq, e G é a constante
gravitacional universal, com valor G' = 6.6743 x 10~ m®kg=!s72

Assumindo-se um sistema de coordenadas inercial arbitrario ABC (Figura , as forgas e
aceleracoes sofridas por cada uma das massas — determinadas pela Segunda Lei de Newton — sao
dadas por:

mims _,

= - mims _,
r, FQ = Moy = —G—

ﬁ] = m17§’1 = —|—G T, (12)

r3 r3

onde ﬁ 1€ ﬁg sao as forcas atuando sobre m; e mo, respectivamente. Os vetores 7] e 75 representam
as posigoes dessas massas em relagao a origem do sistema de coordenadas, enquanto o vetor relativo
7 = T3 — 7 aponta de m; para my. O ponto sobre um vetor (por exemplo, 77) indica derivada
temporal: 7] representa a velocidade de m; e 77 sua aceleracao.

Uma vez que o sistema considerado é fechado, ou seja, nao esta sujeito a acao de forgas externas,

a soma das forcas que atuam sobre as massas deve ser nula. Assim, pela Segunda Lei de Newton,
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Figura 1.1: Representagao do problema de dois corpos em um sistema de coordenadas inercial
arbitrario ABC' (em azul). Os vetores 7] e 7 indicam as posi¢oes das massas m; e ms, respecti-
vamente, em relacao a origem do sistema. O vetor ¥ = 75 — 7] representa a posicao relativa de mo
em relagao a mi. O ponto marcado com um “X” indica o centro de massa do sistema, com vetor
posicao R. As forcas gravitacionais atuando sobre os corpos estao indicadas pelos vetores F1 e F2
(em vermelho), de mesma intensidade e dire¢oes opostas.

tem-se: ) )
mlf'l + mgfg = 0. (13)

Sendo o vetor-posicao do centro de massa definido por:

R» _ mqry + m27"27 (14)

mi + Mo

segue da equacao que a aceleracao do centro de massa € nula, ou seja, E=0.

Esse resultado implica que o centro de massa do sistema encontra-se em inércia, movendo-se
com velocidade constante (ou permanecendo em repouso). Isso motiva uma abordagem conveniente
para o problema: a mudanca para um sistema de coordenadas inercial centrado no centro de
massa. Essa reformulacao geral serd apresentada na Secao ?7. Por ora, adotaremos uma hipotese
simplificadora: assumiremos que m; > msy — hipotese valida, por exemplo, para o sistema Sol-
Terra — de modo que R~ 7. Assim, podemos estudar o movimento do corpo secundario (menos
massivo, msy) em um sistema de coordenadas centrado no corpo primdrio (mais massivo, my).

1.1. Movimento de um secundario ao redor de um primario
massivo

1.1.1. Lei das Areas

Seja um sistema de coordenadas xyz centrado no primario my. Nesse referencial, o vetor-aceleracao
do secundario moy pode ser expresso por:

iy = —glmtme) (15)

r3
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Definindo a constante gravitacional reduzida como p = G(m; + ms), obtemos a equagao do movi-
mento relativo:

P4 ﬂf =0, (1.6)
a qual corresponde a uma equacao vetorial dlferenc:lal de segunda ordem. Resolver essa equacao
equivale a determinar as posicoes e velocidades do secundario ao longo do tempo, a partir de sua
posicao e velocidade iniciais.

Como a equagao é de segunda ordem, sua solucao envolve a determinacao de duas cons-
tantes integrais por dimensao espacial — totalizando seis constantes do movimento. Assim, uma
estratégia 1til para a resolucao do problema consiste em manipular a equacao de forma a
determinar tais constantes, as quais caracterizarao completamente a érbita do secundario.

A primeira dessas constantes pode ser determinada notando-se que o vetor aceleragao é propor-
cional ao vetor posigao, o que implica que o produto vetorial entre eles corresponde ao vetor-nulo
(Fx 7= O) Integrando essa relacao no tempo, obtém-se:

7 xF=h, (1.7)

onde h é uma constante vetorial que pode ser reconhecida como o momento angular especifico do
sistema, ou seja, o momento angular por unidade de massa. O fato de o momento angular ser uma
grandeza conservada ¢ esperado, uma vez que nao ha forgas externas atuando sobre o sistema.

A equagao ([1.7)) explicita que os vetores 7 e 7 sao ambos perpendiculares a h. Tal fato implica
que o movimento ocorre em um plano definido por 7 e 7, o qual é ortogonal ao vetor momento
angular. Em outras palavras, o movimento da massa ms ao redor de m; permanece restrito a
um plano fixo, denominado plano orbital. Essa propriedade permite reduzir um grau de liberdade
espacial do sistema, restringindo a analise ao plano de movimento.

Assumindo um sistema de coordenadas polares no plano orbital (Figura , tem-se que os
vetores posigao, velocidade e aceleragao podem ser escritos, respectivamente, como:

r=rr, (1.8)
F=77+r06, (1.9)
r= (i —rf?) 7 + (270 + 16) 0, (1.10)

onde 6 representa o angulo entre a posi¢cao do corpo msy e uma direcao de referéncia fixa no plano
orbital.

Substituindo os vetores posi¢ao e velocidade em coordenadas polares (Equagoes e [1.9) na
Equagéo [L.7], é possivel determinar o momento angular do sistema, encontrando-se:

h = hz = r?0z, (1.11)

onde 2 é o vetor unitario perpendicular ao plano orbital.

Como o momento angular do sistema é uma constante, a Equacao permite relacionar
a frequéncia angular da massa my com sua posicao instantanea, ambas grandezas dependentes
do tempo. Para explorar essa relacao, sera avaliada a area varrida pelo secundario durante um
intervalo de tempo d0t. No instante ¢t = 0, o secunddrio encontra-se na posigao 7(t = 0) = r7 + 9@,
enquanto no instante ¢ = 0t, sua posicio é #(t = 0t) = (r + 0r)7 + (0 + 00)0. Assim, a drea varrida

dA é dada por (Figura|1.2)):
1
d0A = QT(T + dr) sin 66. (1.12)
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plano orbital

Figura 1.2: Representagao do movimento do corpo secundério ms ao redor do priméario m; no
plano orbital. Os vetores unitarios 7 e 6 definem a base polar associada a posicao instantanea de
mo no instante ¢ = 0, enquanto 7 é o vetor posigao e U, a velocidade. O angulo 6 é medido a partir
de uma direcao de referéncia fixa arbitraria. Em um intervalo de tempo dt, o corpo varre uma
area 0 A, representada pela regiao hachurada. O vetor momento angular do sistema é constante e
perpendicular ao plano orbital, apontando para fora do plano da figura.

Assumindo o limite ¢ — 0 (de modo que ér — 0 e sindf — §6), a taxa de variacao da area
serd dada por:
dA _ 1,40 _h (1.13)
a2 dt 2
Como o momento angular é constante, a area varrida pelo secundario é proporcional ao tempo
(A= %t + constante). Em outras palavras, o secundério varre dreas iguais em tempos iguais. Isso
significa que, ao longo de uma mesma érbita, o secundario move-se mais rapidamente quando esta
préoximo do priméario e mais lentamente quando esta mais afastado. Essa lei é conhecida como a Lei
das Areas ou Sequnda Lei de Kepler, em homenagem ao astronomo alemao Johannes Kepler, que
a formulou empiricamente ao estudar as posicoes dos planetas nas tabelas astronomicas obtidas

por Tycho Brahe.

1.1.2. Lei das Orbitas

Agora, substituindo os vetores posigao e aceleragdo em coordenadas polares (Equagoes e (1.10))
na Equacao [1.6] encontra-se a equagao planar do movimento relativo, dada por:
- 2 K
P —rf +§—O. (1.14)
Tal equacao é classificada como uma equacao de Bernoulli e pode ser resolvida por meio da
mudanca de varidvel » = v~!. Derivando r em relacao ao tempo:
1 1 du du
r=——u=———0=—h— 1.15
u? u? df db’ (1.15)
onde foi utilizado o fato de que § = h/r? = hu?,
Derivando novamente no tempo:

d (du d?u - R
= —h— — ) = —h——0 = —h2u2—. 1.16
: ﬁ(%) d6? " ae (1.16)
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Tabela 1.1: Relacao entre o tipo de dérbita, a excentricidade e e o parametro de érbita p, sendo a
0 semi-eixo maior e ¢, a distancia do pericentro.

Conica Excentricidade | Parametro de é6rbita
Circunferéncia e=0 p=a
Elipse 0<e<l1 p=a(l—e?)
Parabola e=1 p=2q
Hipérbole e>1 p=ale? —1)

Substituindo essas expressoes na Equacao [1.14] obtém-se:

— tu=—. (1.17)

A solucao homogénea dessa equacao diferencial é dada por uj, = ¢; cos @ + ¢ sinf, enquanto a
solugao particular é u, = p/h?. Assim, a solugao geral pode ser escrita como:

u(f) = %(cl cosf + casinf + 1), (1.18)

onde ¢; e ¢y sao constantes do movimento.
Assumindo ¢; = ecosw e ¢; = esinw, e retornando a varidvel original r = 1/u, encontra-se:

r(0) = 1+eco§(9—w)’ (1.19)

onde p = h?/p é o chamado parametro da érbita.

Como pode ser notado, a Equacao|l.19|corresponde a equacgao geral das conicas em coordenadas
polares, o que implica que a érbita do secundéario em torno do primario é uma segao conica. Essa
relacao é conhecida como a Lei das Orbitas. As conicas sio figuras geométricas obtidas pela
intersecao entre um plano e um cone, resultando em quatro casos distintos: circunferéncia, elipse,
parabola e hipérbole. Cada tipo é caracterizado por um intervalo distinto da excentricidade orbital
e e por uma expressao especifica do parametro orbital p, conforme mostrado na Tabela

A circunferéncia e a elipse correspondem a dérbitas fechadas — tipicas dos planetas, satélites
e asteroides —, enquanto a pardbola e a hipérbole representam oOrbitas abertas, frequentemente
associadas a cometas interestelares ou sondas espaciais em trajetorias de escape.

1.1.3. Lei dos Periodos
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