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Caṕıtulo 1

O problema de 2 corpos

O Problema de Dois Corpos trata da interação gravitacional entre dois corpos massivos isolados no
espaço, de acordo com a lei da gravitação universal de Newton. É o caso mais simples e fundamental
da Dinâmica Orbital, servindo como base para a compreensão do movimento de corpos celestes.
Sua solução permite obter as equações das órbitas descritas por cada um dos corpos em torno
do centro de massa do sistema, bem como os elementos orbitais que determinam o formato e a
orientação dessas órbitas no espaço. É também o único caso de sistema gravitacional com solução
puramente anaĺıtica, o que reforça sua importância conceitual. Já o Problema de Três Corpos,
discutido no Caṕıtulo , admite soluções anaĺıticas apenas em casos especiais. Situações mais gerais,
envolvendo três ou mais corpos em interação gravitacional, requerem abordagens semi-anaĺıticas
ou totalmente numéricas.

Como suposição simplificadora, os dois corpos são assumidos como pontos de massa, com
massas m1 e m2. Um ponto de massa corresponde a um corpo material idealizado cuja massa
está concentrada em um único ponto do espaço – ou seja, trata-se de um objeto sem dimensão
f́ısica. Nessa condição, aplica-se a Lei da Gravitação Universal de Newton, segundo a qual a força
gravitacional F⃗ entre os corpos é dada por:

F⃗ = −G
m1m2

r3
r⃗, (1.1)

onde r⃗ é o vetor-posição do corpo de massa m2 em relação ao corpo de massa m1, e G é a constante
gravitacional universal, com valor G = 6.6743× 10−11 m3 kg−1 s−2.

Assumindo-se um sistema de coordenadas inercial arbitrário ABC (Figura 1.1), as forças e
acelerações sofridas por cada uma das massas – determinadas pela Segunda Lei de Newton – são
dadas por:

F⃗1 = m1
¨⃗r1 = +G

m1m2

r3
r⃗, F⃗2 = m2

¨⃗r2 = −G
m1m2

r3
r⃗, (1.2)

onde F⃗1 e F⃗2 são as forças atuando sobre m1 e m2, respectivamente. Os vetores r⃗1 e r⃗2 representam
as posições dessas massas em relação à origem do sistema de coordenadas, enquanto o vetor relativo
r⃗ = r⃗2 − r⃗1 aponta de m1 para m2. O ponto sobre um vetor (por exemplo, ¨⃗r1) indica derivada
temporal: ˙⃗r1 representa a velocidade de m1 e ¨⃗r1 sua aceleração.

Uma vez que o sistema considerado é fechado, ou seja, não está sujeito à ação de forças externas,
a soma das forças que atuam sobre as massas deve ser nula. Assim, pela Segunda Lei de Newton,
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Figura 1.1: Representação do problema de dois corpos em um sistema de coordenadas inercial
arbitrário ABC (em azul). Os vetores r⃗1 e r⃗2 indicam as posições das massas m1 e m2, respecti-
vamente, em relação à origem do sistema. O vetor r⃗ = r⃗2 − r⃗1 representa a posição relativa de m2

em relação a m1. O ponto marcado com um “X” indica o centro de massa do sistema, com vetor
posição R⃗. As forças gravitacionais atuando sobre os corpos estão indicadas pelos vetores F⃗1 e F⃗2

(em vermelho), de mesma intensidade e direções opostas.

tem-se:
m1

¨⃗r1 +m2
¨⃗r2 = 0⃗. (1.3)

Sendo o vetor-posição do centro de massa definido por:

R⃗ =
m1r⃗1 +m2r⃗2
m1 +m2

, (1.4)

segue da equação (1.3) que a aceleração do centro de massa é nula, ou seja,
¨⃗
R = 0⃗.

Esse resultado implica que o centro de massa do sistema encontra-se em inércia, movendo-se
com velocidade constante (ou permanecendo em repouso). Isso motiva uma abordagem conveniente
para o problema: a mudança para um sistema de coordenadas inercial centrado no centro de
massa. Essa reformulação geral será apresentada na Seção ??. Por ora, adotaremos uma hipótese
simplificadora: assumiremos que m1 ≫ m2 – hipótese válida, por exemplo, para o sistema Sol-
Terra – de modo que R⃗ ≈ r⃗1. Assim, podemos estudar o movimento do corpo secundário (menos
massivo, m2) em um sistema de coordenadas centrado no corpo primário (mais massivo, m1).

1.1. Movimento de um secundário ao redor de um primário

massivo

1.1.1. Lei das Áreas

Seja um sistema de coordenadas xyz centrado no primáriom1. Nesse referencial, o vetor-aceleração
do secundário m2 pode ser expresso por:

¨⃗r = ¨⃗r2 − ¨⃗r1 = −G
(m1 +m2)

r3
r⃗. (1.5)
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Definindo a constante gravitacional reduzida como µ = G(m1 +m2), obtemos a equação do movi-
mento relativo:

¨⃗r +
µ

r3
r⃗ = 0⃗, (1.6)

a qual corresponde a uma equação vetorial diferencial de segunda ordem. Resolver essa equação
equivale a determinar as posições e velocidades do secundário ao longo do tempo, a partir de sua
posição e velocidade iniciais.

Como a equação (1.6) é de segunda ordem, sua solução envolve a determinação de duas cons-
tantes integrais por dimensão espacial – totalizando seis constantes do movimento. Assim, uma
estratégia útil para a resolução do problema consiste em manipular a equação (1.6) de forma a
determinar tais constantes, as quais caracterizarão completamente a órbita do secundário.

A primeira dessas constantes pode ser determinada notando-se que o vetor aceleração é propor-
cional ao vetor posição, o que implica que o produto vetorial entre eles corresponde ao vetor-nulo
(r⃗ × ¨⃗r = 0⃗). Integrando essa relação no tempo, obtém-se:

r⃗ × ˙⃗r = h⃗, (1.7)

onde h⃗ é uma constante vetorial que pode ser reconhecida como o momento angular espećıfico do
sistema, ou seja, o momento angular por unidade de massa. O fato de o momento angular ser uma
grandeza conservada é esperado, uma vez que não há forças externas atuando sobre o sistema.

A equação (1.7) explicita que os vetores r⃗ e ˙⃗r são ambos perpendiculares a h⃗. Tal fato implica
que o movimento ocorre em um plano definido por r⃗ e ˙⃗r, o qual é ortogonal ao vetor momento
angular. Em outras palavras, o movimento da massa m2 ao redor de m1 permanece restrito a
um plano fixo, denominado plano orbital. Essa propriedade permite reduzir um grau de liberdade
espacial do sistema, restringindo a análise ao plano de movimento.

Assumindo um sistema de coordenadas polares no plano orbital (Figura 1.2), tem-se que os
vetores posição, velocidade e aceleração podem ser escritos, respectivamente, como:

r⃗ = r r̂, (1.8)

˙⃗r = ṙ r̂ + rθ̇ θ̂, (1.9)

¨⃗r = (r̈ − rθ̇2) r̂ + (2ṙθ̇ + rθ̈) θ̂, (1.10)

onde θ representa o ângulo entre a posição do corpo m2 e uma direção de referência fixa no plano
orbital.

Substituindo os vetores posição e velocidade em coordenadas polares (Equações 1.8 e 1.9) na
Equação 1.7, é posśıvel determinar o momento angular do sistema, encontrando-se:

h⃗ = hẑ = r2θ̇ẑ, (1.11)

onde ẑ é o vetor unitário perpendicular ao plano orbital.
Como o momento angular do sistema é uma constante, a Equação 1.11 permite relacionar

a frequência angular da massa m2 com sua posição instantânea, ambas grandezas dependentes
do tempo. Para explorar essa relação, será avaliada a área varrida pelo secundário durante um
intervalo de tempo δt. No instante t = 0, o secundário encontra-se na posição r⃗(t = 0) = rr̂ + θθ̂,
enquanto no instante t = δt, sua posição é r⃗(t = δt) = (r+ δr)r̂+ (θ+ δθ)θ̂. Assim, a área varrida
δA é dada por (Figura 1.2):

δA =
1

2
r(r + δr) sin δθ. (1.12)
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Figura 1.2: Representação do movimento do corpo secundário m2 ao redor do primário m1 no
plano orbital. Os vetores unitários r̂ e θ̂ definem a base polar associada à posição instantânea de
m2 no instante t = 0, enquanto r⃗ é o vetor posição e v⃗, a velocidade. O ângulo θ é medido a partir
de uma direção de referência fixa arbitrária. Em um intervalo de tempo δt, o corpo varre uma
área δA, representada pela região hachurada. O vetor momento angular do sistema é constante e
perpendicular ao plano orbital, apontando para fora do plano da figura.

Assumindo o limite δt → 0 (de modo que δr → 0 e sin δθ → δθ), a taxa de variação da área
será dada por:

dA

dt
=

1

2
r2
dθ

dt
=

h

2
. (1.13)

Como o momento angular é constante, a área varrida pelo secundário é proporcional ao tempo
(A = h

2
t+ constante). Em outras palavras, o secundário varre áreas iguais em tempos iguais. Isso

significa que, ao longo de uma mesma órbita, o secundário move-se mais rapidamente quando está
próximo do primário e mais lentamente quando está mais afastado. Essa lei é conhecida como a Lei
das Áreas ou Segunda Lei de Kepler, em homenagem ao astrônomo alemão Johannes Kepler, que
a formulou empiricamente ao estudar as posições dos planetas nas tabelas astronômicas obtidas
por Tycho Brahe.

1.1.2. Lei das Órbitas

Agora, substituindo os vetores posição e aceleração em coordenadas polares (Equações 1.8 e 1.10)
na Equação 1.6, encontra-se a equação planar do movimento relativo, dada por:

r̈ − rθ̇2 +
µ

r2
= 0. (1.14)

Tal equação é classificada como uma equação de Bernoulli e pode ser resolvida por meio da
mudança de variável r = u−1. Derivando r em relação ao tempo:

ṙ = − 1

u2
u̇ = − 1

u2

du

dθ
θ̇ = −h

du

dθ
, (1.15)

onde foi utilizado o fato de que θ̇ = h/r2 = hu2.
Derivando novamente no tempo:

r̈ = −h
d

dt

(
du

dθ

)
= −h

d2u

dθ2
θ̇ = −h2u2d

2u

dθ2
. (1.16)
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Tabela 1.1: Relação entre o tipo de órbita, a excentricidade e e o parâmetro de órbita p, sendo a
o semi-eixo maior e q, a distância do pericentro.

Cônica Excentricidade Parâmetro de órbita
Circunferência e = 0 p = a

Elipse 0 < e < 1 p = a(1− e2)
Parábola e = 1 p = 2q
Hipérbole e > 1 p = a(e2 − 1)

Substituindo essas expressões na Equação 1.14, obtém-se:

d2u

dθ2
+ u =

µ

h2
. (1.17)

A solução homogênea dessa equação diferencial é dada por uh = c̃1 cos θ + c̃2 sin θ, enquanto a
solução particular é up = µ/h2. Assim, a solução geral pode ser escrita como:

u(θ) =
µ

h2
(c1 cos θ + c2 sin θ + 1), (1.18)

onde c1 e c2 são constantes do movimento.
Assumindo c1 = e cosϖ e c2 = e sinϖ, e retornando à variável original r = 1/u, encontra-se:

r(θ) =
p

1 + e cos (θ −ϖ)
, (1.19)

onde p = h2/µ é o chamado parâmetro da órbita.
Como pode ser notado, a Equação 1.19 corresponde à equação geral das cônicas em coordenadas

polares, o que implica que a órbita do secundário em torno do primário é uma seção cônica. Essa
relação é conhecida como a Lei das Órbitas. As cônicas são figuras geométricas obtidas pela
interseção entre um plano e um cone, resultando em quatro casos distintos: circunferência, elipse,
parábola e hipérbole. Cada tipo é caracterizado por um intervalo distinto da excentricidade orbital
e e por uma expressão espećıfica do parâmetro orbital p, conforme mostrado na Tabela 1.1.

A circunferência e a elipse correspondem a órbitas fechadas – t́ıpicas dos planetas, satélites
e asteroides –, enquanto a parábola e a hipérbole representam órbitas abertas, frequentemente
associadas a cometas interestelares ou sondas espaciais em trajetórias de escape.

1.1.3. Lei dos Peŕıodos
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